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1. Introduction

In the framework of the Standard Model (SM), Lepton Flavor Violating (LFV) processes

such as µ+ → e+γ, µ+ → e+e−e+ and µ − e conversion on nuclei (i.e., µN → eN) are

forbidden. Within the SM augmented with neutrino mass and mixing, such processes are

in principle allowed but the rates are suppressed by factors of (∆m2
ν/E

2
W )2 [1] and are too

small to be probed in the foreseeable future.

Various models beyond the SM can give rise to LFV rare decay with branching ratios

exceeding the present bounds [2]:

Br(µ+ → e+γ) < 1.2 × 10−11 Br(µ+ → e+e+e−) < 1.0 × 10−12 at 90% C.L.

For low scale MSSM (mSUSY ∼ 100 GeV), these experimental bounds imply stringent

bounds on the LFV sources in the Lagrangian. The MEG experiment at PSI [3], which is

expected to release data in summer 2009, will eventually be able to probe Br(µ+ → e+γ)

down to 10−13. In our opinion, it is likely that the first evidence for physics beyond

the SM comes from the MEG experiment. If the branching ratio is close to its present

bound, the MEG experiment will detect statistically significant number of such events.

As a result, making precision measurement will become a possibility within a few years.

Muons in the MEG experiment are produced by decay of the stopped pions (at rest) so

they are almost 100% polarized. This opens up the possibility of learning about the chiral

nature of the underlying theory by studying the angular distribution of the final particles

relative to the spin of the parent particle [4]. In ref. [5], it has been shown that by

measuring the polarization of the final states in the decay modes µ+ → e+γ and µ+ →
e+e−e+, one can derive information on the CP-violating sources of the underlying theory.

Notice that even for the state-of-the-art LHC experiment, it will be quite challenging (if
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possible at all) to determine the CP-violating phases in the lepton sector [6]. Suppose

the LHC establishes a particular theory beyond the SM such as supersymmetry. In order

to learn more about the CP-violating phases, the well-accepted strategy is to build yet a

more advanced accelerator such as ILC. Considering the expenses and challenges before

constructing such an accelerator, it is worth to give any alternative method such as the

one suggested in ref. [5] a thorough consideration. In this paper we elaborate more on this

method within the framework of R-parity conserving MSSM.

LFV sources in the Lagrangian can also give rise to sizeable µ − e conversion rate.

There are strong bounds on the rates of such processes [7, 4, 8]:

R(µTi → eTi) ≡ Γ(µTi → eTi)

Γ(µTi → capture)
< 6.1 × 10−13 . (1.1)

The upper bound on R restricts the LFV sources however, for the time being, the bound

from µ → eγ is more stringent. The PRISM/PRIME experiment is going to perform a new

search for the µ − e conversion [9]. In case that the values of LFV parameters are close

to the present upper bound, a significantly large number of the µ − e conversion events

can be recorded by PRISM/PRIME. Recently it is shown in [10] that if the initial muon

is polarized (at least partially), studying the transverse polarization of the electron yields

information on the CP-violating phase. In this paper, we elaborate more on this possibility

taking into account all the relevant effects in the context of R-parity conserving MSSM.

In the end of the paper, we study the possibility of eliminating the degeneracies of the

parameter space by combining information from µ → eγ and µ−e conversion experiments.

We then demonstrate that the forthcoming results from de search can help us to eliminate

the degeneracies further (cf. figures 8a,8b).

The paper is organized as follows: In section 2, using the results of ref. [5], we calculate

the polarization of the final particles in decay µ → eγ in terms of the couplings of the low

energy effective Lagrangian (after integrating out the supersymmetric states). We also

briefly discuss µ → eee and the challenges of deriving the CP-violating phases by its study.

In section 3, we calculate the transverse polarization of the muon in the µ − e conversion

experiment in terms of the couplings in the effective Lagrangian which give the dominant

contribution to µN → eN within the MSSM. In section 4, we study the overall pattern of

the variation of 〈sT2
〉 and 〈PT1

sT2
〉 with phases and discuss the regions of the parameter

space where the sensitivity to the phases are sizeable. In section 5, we discuss how by

combining information from the µ → eγ and µN → eN experiments, we can solve the

degeneracies in the parameter space. The conclusions are summarized in section 6.

2. Polarization of the final particles

The low energy effective Lagrangian that gives rise to µ → eγ can be written as

L =
AR

mµ
µ̄RσµνeLFµν +

AL

mµ
µ̄LσµνeRFµν +

A∗
R

mµ
ēLσµνµRFµν +

A∗
L

mµ
ēRσµνµLFµν , (2.1)

where σµν = i
2 [γµ, γν ] and Fµν is the photon field strength: Fµν = ∂µεν − ∂νεµ. AL and

AR receive contributions from the LFV parameters of MSSM at one loop level [11, 12, 4].
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In this section we derive the polarizations of the final particles in the LFV rare decays in

terms of AL and AR. Let us define the longitudinal and transverse directions as follows:

l̂ ≡ ~pe+/|~pe+ |, T̂2 ≡ ~pe+ × ~sµ/|~pe+ × ~sµ| and T̂1 ≡ T̂2 × l̂. As shown in [5], the partial decay

rate of an anti-muon at rest into a positron and a photon with definite spins of ~se and ~sγ is

dΓ[µ+(Pµ+) → e+(Pe+ , ~se+)γ(Pγ , ~sγ)]

d cos θ
=

mµ

8π

[
|α+|2|AL|2(1 + Pµ cos θ) sin2 θs

2
(2.2)

+ |α−|2|AR|2(1 − Pµ cos θ) cos2 θs

2

−PµRe[α+α∗
−A∗

LAReiφs ] sin θ sin θs

]
,

where Pµ is the polarization of the anti-muon, θ is the angle between the directions of the

spin of the anti-muon and the momentum of the positron, and θs is the angle between

the spin of the positron and its momentum. In the above formula, φs is the azimuthal

angle that the spin of the final positron makes with the plane of spin of the muon and the

momentum of the positron. Finally, α+ and α− give the polarization of the final photon:

~ε · T̂1 ≡
∑

j∈{1,2,3}

(T̂1)jεj =
α+ + α−√

2
and ~ε · T̂2 ≡

∑

j∈{1,2,3}

(T̂2)jεj =
α+ − α−√

2
i

where
√

|α+|2 + |α−|2 = 1. Notice that for a given polarization of the positron,

the photon has a definite polarization: i.e., setting Pµ = 100% and α+ =

α−e−iφs(A∗
R/A∗

L) tan θ/2 cot θs/2, we find dΓ/d cos θ = 0. Consider the case that Pµ =

100% and the positron is emitted in the direction of the spin of the muon; i.e., θ = 0.

From (2.2), we find that for θs = π and α+ = 1, dΓ/d cos θ is maximal. In other words,

in this case, the spins of the positron and the photon are respectively aligned in the di-

rection anti-parallel and parallel to the spin of the muon. This is expected because when

θ = 0 there is a cylindrical symmetry around the axis parallel to the spin of the muon

and therefore the total angular momentum in the direction of the spin does not receive

any contribution from the relative angular momentum. This means the sum of spins in

the l̂ direction has to be conserved which in turn implies that the decay rate is maximal

at θs = π and α+ = 1. Similar consideration also applies to the case that the positron is

emitted antiparallel to the spin of the muon: For θ = π, the emission is maximal at θs = 0

and α− = 1.

Summing over the polarization of the final particles in eq. (2.2), we obtain

∑

~sγ~s
e+

dΓ[µ+(Pµ+) → e+(Pe+ , ~se+)γ(Pγ , ~sγ)]

d cos θ
=

mµ

8π

[
|AL|2(1+Pµ cos θ)+|AR|2(1−Pµ cos θ)

]
.

Thus, Γ(µ → eγ) is given by (|AL|2 + |AR|2). It is convenient to define

R1 ≡ |AL|2 − |AR|2
|AL|2 + |AR|2

. (2.3)

By measuring the total decay rate and the angular distribution of the final particles, one

can derive absolute values AL and AR. To measure the relative phase of these couplings,

the polarization of the final particles also have to be measured.

– 3 –
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Let us define the polarizations of the electron and photon in an arbitrary direction T̂

respectively as

〈sT 〉 ≡
∑

~sγ

[
dΓ

[
µ+ → e+(~se+ = 1

2 T̂ )γ(~sγ)
]
− dΓ

[
µ+ → e+(~se+ = −1

2 T̂ )γ(~sγ)
]]

∑
~sγ~s

e+
dΓ [µ+ → e+(~se+)γ(~sγ)]

(2.4)

and

〈PT 〉 ≡
∑

~s
e+

dΓ
[
µ+ → e+(~se+)γ(~ε q T̂ )

]

∑
~sγ~s

e+
dΓ [µ+ → e+(~se+)γ(~sγ)]

(2.5)

where ~ε is the polarization vector of the photon.

From eq. (2.2), we find that the polarization of positron (once we average over the

polarizations of the photon) is

〈sT1
〉 = 〈sT2

〉 = 0 , 〈sl〉 =
|AR|2(1 − Pµ cos θ)− |AL|2(1 + Pµ cos θ)

|AR|2(1 − Pµ cos θ) + |AL|2(1 + Pµ cos θ)
.

That is while the linear polarization of the photon (once we sum over the polarization of

the positron) is

〈PT1
〉 = 〈PT2

〉 =
1

2
.

Unfortunately, neither the polarization of the positron nor the polarization of the

photon carries any information on the relative phase of AL and AR. However, the double

correlation of the polarization carries such information. Let us define double correlation as

follows

〈PT ′sT 〉 ≡
dΓ

[
µ+ → e+(~se+ = 1

2 T̂ )γ(~ε q T̂ ′)
]
− dΓ

[
µ+ → e+(~se+ = −1

2 T̂ )γ(~ε q T̂ ′)
]

∑
~sγ~s

e+
dΓ [µ+ → e+(~se+)γ(~sγ)]

(2.6)

where T̂ and T̂ ′ are arbitrary directions. From eq. (2.2), we find

〈PT1
sT1

〉 = −〈PT2
sT1

〉 =
−PµRe[A∗

LAR] sin θ

|AR|2(1 − Pµ cos θ) + |AL|2(1 + Pµ cos θ)
(2.7)

and

〈PT1
sT2

〉 = −〈PT2
sT2

〉 =
PµIm[A∗

LAR] sin θ

|AR|2(1 − Pµ cos θ) + |AL|2(1 + Pµ cos θ)
. (2.8)

Thus, as pointed out in [5], to extract the CP-violating phases both polarization and their

correlation have to be measured. Eq. (2.7) gives the correlation of the polarizations for

particles emitted along the direction described by θ. Averaging over θ, we find

〈PT1
sT1

〉 = −〈PT2
sT1

〉 =

∫ 1
−1 PµRe[A∗

LAR] sin θd cos θ
∫ 1
−1 [|AR|2(1 − Pµ cos θ) + |AL|2(1 + Pµ cos θ)] d cos θ

=
−πPµRe[A∗

LAR]

4(|AL|2 + |AR|2)
(2.9)
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and

〈PT1
sT2

〉 = −〈PT2
sT2

〉 =

∫ 1
−1 PµIm[A∗

LAR] sin θd cos θ
∫ 1
−1 [|AR|2(1 − Pµ cos θ) + |AL|2(1 + Pµ cos θ)] d cos θ

=
πPµIm[A∗

LAR]

4(|AL|2 + |AR|2)
. (2.10)

Notice that to take average over angles, one should weigh the polarization of positron

emitted within a given interval (θ, θ + dθ) with the number of emission in this interval

and then integrate over angles. That is why we have integrated over d cos θ in both the

numerator and denominator of the right-hand side of the ratios in eqs. (2.7,2.8) instead of

calculating
∫
〈PTi

sTj
〉d cos θ/

∫
d cos θ.

From eqs. (2.7), (2.8), we find that if the polarimeter is located at θ = π/2, the

polarization and therefore sensitivity is maximal. Notice that

〈PTi
sTj

〉|θ= π
2

=
4

π
〈PTi

sTj
〉 .

Measurement of 〈PTi
sTj

〉 requires setting polarimeters all around the region where the

decay takes place. In section 4, we perform an analysis of 〈PTi
sTj

〉. Up to a factor of

4/π, our results applies to the case that measurement of the polarization is performed only

at θ = π/2.

The ratios of the polarizations yield the relative phase of the effective couplings

〈PT1
sT2

〉
〈PT1

sT1
〉 =

〈PT1
sT2

〉
〈PT1

sT1
〉

=
〈PT2

sT2
〉

〈PT2
sT1

〉 =
〈PT2

sT2
〉

〈PT2
sT1

〉
= − Im[A∗

LAR]

Re[A∗
LAR]

.

Techniques for the measurement of the transverse polarization of the positron have

already been developed and employed for deriving the Michel parameters [13]. Measuring

the linear polarization of the photon is going to be more challenging but is in principle

possible [14].

In the following, we discuss the LFV process µ+ → e+e−e+. The effective Lagrangian

shown in eq. 2.1 can also give rise to LFV rare decay µ+ → e+e−e+ through penguin

diagrams. Moreover, the process can also receive contributions from the LFV four-fermion

terms of the form

Ciµ̄Γµ
i (aiPL + biPR)eēΓi,µ(ciPL + diPR)e

where ai, bi, ci and di are numbers of order one and Γi,µ = γµ or 1. In the framework of

R-parity conserving MSSM which is the focus of the present study, the couplings of the

four-fermion interaction are suppressed; i.e., m2
µCi ≪ AL,R. Moreover, the contributions

of the AL and AR terms for the case that the momentum of one of the positrons is close to

mµ/2 is dramatically enhanced because in this limit the virtual photon in the corresponding

diagram goes on-shell. In [5], it is shown that by studying the transverse polarization of

the positron whose energy is close to mµ/2, one can extract information on the phases

of the underlying theory. The maximum energy of the positrons emitted in the decay

µ+ → e+e−e+ is Emax ≃ mµ/2− 3m2
e/(2mµ). Consider the case that one of the positrons,

– 5 –
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e+
1 , has an energy close to Emax; i.e., Emax − ∆E < E1 < Emax where ∆E ≪ mµ.

Following [5], let us define

dΓMax

d cos θdφ
=

∑

s
e
+
2

,s
e−

∫ Emax

Emax−∆E

∫
dΓ(µ+ → e+

1 e−e+
2 )

dE2dE1d cos θdφ
dE2dE1 , (2.11)

where θ is the angle between the spin of the muon and the momentum of e+
1 (the positron

whose energy is close to Emax) and φ is the azimuthal angle that the momentum of e+
2

makes with the plane made by the momentum of e+
1 and the spin of the muon. Let us

suppose that a cut is employed that picks up only events with E1 within (Emax, Emax−∆E)

where 2me < ∆E ≪ mµ. Because of the enhancement of the amplitude at E1 → Emax,

the number of events passing the cut is still significant: i.e., ΓMax/Γtot(µ
+ → e+e−e+) =

log(mµ∆E/4m2
e)/

(
log(m2

µ/4m2
e) − 7/12

)
> 50%. As shown in [5],

dΓMax

d cos θdφ
=

αmµ

192π3

[
|AL|2|ce|2(1 + Pµ cos θ) + |AR|2|de|2(1 − Pµ cos θ) (2.12)

+Pµ sin θ (cos(2φ)Re[ARA∗
Ldec

∗
e] + sin(2φ)Im[ARA∗

Ldec
∗
e])] log

mµ∆E

4m2
e

,

where Pµ is the polarization of the initial muon and ce and de are the elements of the spinor

of e+
1 : ve+

1

=
√

2E1(0, de, ce, 0)
T where (|de|2 + |ce|2)1/2 = 1 and the z-direction is taken to

be along the momentum of e+
1 . Using the above formula it is straightforward to show that

the transverse polarization of e+
1 is

〈sT1
〉 =

Pµ sin θ (cos 2φRe[ARA∗
L] + sin 2φIm[ARA∗

L])

|AL|2(1 + Pµ cos θ) + |AR|2(1 − Pµ cos θ)

and

〈sT2
〉 =

Pµ sin θ (− cos 2φIm[ARA∗
L] + sin 2φRe[ARA∗

L])

|AL|2(1 + Pµ cos θ) + |AR|2(1 − Pµ cos θ)
,

where T̂2 = −(~sµ × ~pe+

1

)/|~sµ × ~pe+

1

| and T̂1 = (T̂2 × ~pe+

1

)/|T̂2 × ~pe+

1

|.
Notice that the averages of 〈sT1

〉 and 〈sT2
〉 over φ vanish, so to extract information

on arg[ARA∗
L], one has to measure the azimuthal angle that the momentum of the sec-

ond positron makes with the plane made by ~sµ and ~pe+

1

. However, measuring φ will be

challenging because when (Pµ − Pe+
1

)2 → 0, the angle between the momenta of the two

emitted positrons converges to π. For general configuration with (Pµ − Pe+

1,2
)2 ∼ m2

µ,

the transverse polarization of the electron also carries information on the CP-violating

phases of the underlying theory. In the framework we are studying (R-parity con-

served MSSM), the rate of µ+ → e+e−e+ is small compared to the rate of µ+ → e+γ:

Br(µ+ → e+e+e−)/Br(µ+ → e+γ) ≃ α
3π [log(m2

µ/m2
e) − 11/4] ≃ 0.0061. Thus, even if the

present bound on µ → eγ is saturated, the statistics of µ → eee will be too low to perform

such measurements in the foreseeable future. For this reason, in this paper we will not

elaborate on µ → eee any further.
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3. µ − e conversion

In the range of parameter space that we are interested in, the dominant contribution to

the µ − e conversion comes from the γ and Z boson exchange penguin diagrams and the

effects of four-Fermi LFV terms can be neglected. The effective LFV vertex in the penguin

diagrams can be parameterized as follows

Leff =
e

sin θW cos θW m2
Z

∑

q∈{u,d}

(HLēLγµµL + HRēRγµµR)(Zq
Lq̄LγµqL + Zq

Rq̄RγµqR)

−
∑

q∈{u,d}

Qqe

p2

(
B∗

LēLγµµL + B∗
RēRγµµR + i

A∗
R

mµ
ēLσµνpνµR (3.1)

+i
A∗

L

mµ
ēRσµνpνµL

)
(q̄γµq) + H.c.

where p = pµ − pe is the four-momentum transferred by the photon or Z-boson and Qq

is the electric charge of the quark. Zq
L(R) = T 3

q − Qq sin2 θW is the coupling of left(right)-

handed quark to the Z-boson. HL and HR are the effective couplings of the Z boson to

lepton. AL and AR are the same couplings that appear in eq. (2.1). BL(p2) and BR(p2)

vanish for p2 → 0 so they do not contribute to µ → eγ. Let us evaluate and compare

the contributions of the various couplings appearing in eq. (3.1). Since AL and AR flip

the chirality, they are suppressed by a factor of mµ. Ward identity implies that BR and

BL are suppressed by p2 = −m2
µ. There is not such a suppression in HL and HR, thus

HL(R)/m
2
Z ∼ BL(R)/m

2
µ.

dΓ(µN → eN)

d cos θ
= S

[
1 − Pµ cos θ

2
|aHL+b(A∗

R+B∗
L)|2+

1 + Pµ cos θ

2
|aHR+b(A∗

L+B∗
R)|2

]
,

(3.2)

where S is a numerical factor that includes the nuclear form factor [11] and

a =
e
[
Z(1/2 − 2 sin2 θW ) − N/2

]

2m2
Z sin θW cos θW

and b =
eZ

m2
µ

(3.3)

in which Z and N are respectively the numbers of protons and neutrons inside the nucleus.

Let us define

KR ≡ aHL + b(A∗
R + B∗

L) (3.4)

and

KL ≡ aHR + b(A∗
L + B∗

R). (3.5)

From eq. (3.2), we observe that the total conversion rate,
∫

(dΓ/d cos θ)d cos θ provides us

with information on the sum of |KR|2 and |KL|2. That is while by studying the angular

distribution of the final electron, we can also extract

R2 ≡ |KR|2 − |KL|2
|KR|2 + |KL|2

. (3.6)

Let us now study what extra information can be extracted by measuring the spin of the

final electron.

– 7 –
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Similarly to the case of µ → eγ, let us define the directions T̂1 and T̂2 as follows:

T̂2 = (~pe × ~sµ)/|~pe × ~sµ| and T̂1 = ((~pe × ~sµ) × ~pe)/|(~pe × ~sµ) × ~pe| . Let us also define

〈sTi
〉 ≡

dΓ
[
µN → e(~se = 1

2 T̂i)N
]
− dΓ

[
µN → e(~se = −1

2 T̂i)N
]

∑
~se

dΓ[µN → eN ]
.

It is straightforward to verify that the transverse polarization of the emitted electron in

the directions of T̂1 and T̂2 are

〈sT1
〉 =

2Re [KRK∗
L] Pµ sin θ

|KR|2(1 − Pµ cos θ) + |KL|2(1 + Pµ cos θ)
, (3.7)

〈sT2
〉 =

2Im [KRK∗
L] Pµ sin θ

|KR|2(1 − Pµ cos θ) + |KL|2(1 + Pµ cos θ)
. (3.8)

Averaging over the angular distribution, we find

〈sT1
〉 ≡

∫
〈sT1

〉 dΓ
d cos θd cos θ∫

dΓ
d cos θd cos θ

=
πRe [KRK∗

L] Pµ

2 (|KR|2 + |KL)|2) , (3.9)

and

〈sT2
〉 ≡

∫
〈sT2

〉 dΓ
d cos θd cos θ∫

dΓ
d cos θd cos θ

=
πIm [KRK∗

L] Pµ

2 (|KL|2 + |KR|2)
. (3.10)

The advantage of the study of the µ − e conversion over the study of µ → eγ is that

in the former case there is no need for performing the challenging photon polarization

measurement. The drawback is the polarization of the initial muon. While the polarization

of muon in the µ → eγ experiments is close to 100%, the muons orbiting the nuclei (the

muons in the µ−e conversion experiments) suffer from low polarization of 16% or lower [15].

However, there are proposals to “re-”polarize the muon in the muonic atoms by using

polarized nuclear targets [16].

In this paper, we take Pµ = 20%. For any given value of Pµ, our results can be

simply re-scaled.

4. Effects of the CP-violating phases of MSSM

In this section, we study the polarizations introduced in the previous section in the frame-

work of R-parity conserving Minimal Supersymmetric Standard Model (MSSM). The part

of the superpotential that is relevant to this study can be written as

WMSSM = −Yiê
c
Ri L̂i · Ĥd − µ Ĥu · Ĥd (4.1)

where L̂i, Ĥu and Ĥd are doublets of chiral superfields associated respectively with the

left-handed lepton doublets and the two Higgs doublets of the MSSM. êc
Ri is the chiral

superfield associated with the right-handed charged lepton field, ec
Ri. The index “i” is the

– 8 –
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flavor index. At the electroweak scale, the soft supersymmetry breaking part of Lagrangian

in general has the following form

LMSSM
soft = − 1/2

(
M1B̃B̃ + M2W̃ W̃ + H.c.

)

−
(
(AiYiδij + Aij)ẽ

c
Ri L̃j · Hd + H.c.

)
− L̃i

†
(m2

L)ijL̃j − ẽc
Ri

†
(m2

R)ij ẽ
c
Rj

− m2
Hu

H†
u Hu − m2

Hd
H†

d Hd − (BH Hu · Hd + H.c.), (4.2)

where the “i” and “j” indices determine the flavor and L̃i consists of (ν̃i ẽLi). Notice that

we have divided the trilinear coupling to a diagonal flavor part (AiYei
δij) and a LFV part

(Aij with Aii = 0). Terms involving the squarks as well as the gluino mass term have to be

added to eqs. (4.1), (4.2) but these terms are not relevant to this study. The Hermiticity of

the Lagrangian implies that m2
Hu

, m2
Hd

, and the diagonal elements of m2
L and m2

R are all

real. Moreover, without loss of generality, we can rephase the fields to make the parameters

M2, BH as well as Yi real. In such a basis, the rest of the above parameters can in general

be complex and can be considered as sources of CP-violation. After electroweak symmetry

breaking, Aij gives rise to LFV masses:

(m2
LR)ij = Aij〈Hd〉 for i 6= j .

Notice that in general |Aij | 6= |Aji| and therefore |(m2
LR)ij | 6= |(m2

LR)ji|.
The CP-violating phases that can in principle show up in the polarizations studied in

the previous sections are the phases of Ai, the µ-term, M1 (the Bino mass) and phases of

LFV elements of mass matrices in soft supersymmetry breaking Lagrangian. The strong

bound on the electric dipole moment of the electron implies strong bounds on the phases

of Ae, µ and M1 (see, however [17]). For this reason, in this paper, we set the phases

of these parameters equal to zero and focus on the effects of the phases of Aµ and the

LFV elements of mass matrices. In the present analysis, we focus on the effects of the eµ

elements. Effects of eτ and µτ elements will be explored elsewhere.

Once we turn on the LFV terms, the phase of Aµ as well as the phases of the LFV

elements can contribute to de at one loop level [18, 19]. We therefore have to make sure

that the bounds on de are satisfied. For the parameters that we have considered in this

analysis, the contributions of the phases of eµ elements to de are of order of ∼ 10−29 e cm

and well below the present bound [2]. The contribution of the phase of Aµ is even lower by

one order of magnitude. In the next section, we shall discuss the role of the forthcoming

results of de searches in reducing the degeneracies.

As the reference point, we have chosen the mass spectra corresponding to the P3

benchmark which has been proposed in [20]. We have however let Ae and Aµ deviate

from the corresponding values at the benchmark P3. The values of Ai and Aij are chosen

such that they satisfy the constraints from Color and Charge Breaking (CCB) as well as

Unbounded From Below (UFB) considerations [21]. The rest of the bounds and restrictions

on the parameters of supersymmetry are undisturbed by varying Ai.

Figures 1–3 shows R1, Br(µ → eγ), 〈PT1
sT1

〉 and 〈PT1
sT2

〉 (see, eqs. (2.3), (2.9), (2.10)

for definitions) versus the phases of Aµ and the LFV elements. We have set |Ae| = |Aµ|
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Figure 1: Observable quantities in the µ → eγ experiment versus the phases of Aµ, (m2

L)eµ and

(m2

R)eµ. The vertical axes in figures (a)–(d) are respectively 〈PT1
sT1

〉, 〈PT1
sT2

〉, R1 and Br(µ →
eγ). The input parameters correspond to the P3 benchmark proposed in [20]: |µ| = 400GeV,

m0 = 1000GeV, M1/2 = 500GeV and tanβ = 10 and we have set |Aµ|=|Ae|=700GeV. All the

LFV elements of the slepton mass matrix are set to zero except (m2

L)eµ = 2500 GeV2 and (m2

R)eµ =

12500 GeV2. We have taken Pµ = 100%.

however the results are robust against varying the values of |Ae| as expected. In figure 1,

we have taken Aij and all the LFV elements of the slepton mass matrix other than (m2
L)eµ

and (m2
R)eµ equal to zero. Notice that (m2

L)eµ and (m2
R)eµ have been chosen such that

Br(µ → eγ) lies close to its present experimental upper bound. As seen from figure 1c,

for such choice of (m2
L)eµ and (m2

R)eµ, R1 is close to zero which means |AL| ≈ |AR|. As a

result, we expect the transverse polarization to be sizable. Figures 1a,1b demonstrate that

this expectation is fulfilled. From figures 1a,1b, we also observe that the sensitivity of the

transverse polarization to the phases of (m2
L)eµ and (m2

R)eµ is significant so by measuring

these polarizations with a moderate accuracy one can extract information on these phases.
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Figure 2: Observable quantities in the µ → eγ experiment versus the phases of Aµ, (m2

L)eµ and

(m2

R)eµ. The vertical axes in figures (a)–(d) are respectively 〈PT1
sT1

〉, 〈PT1
sT2

〉, R1 and Br(µ →
eγ). The input parameters correspond to the P3 benchmark proposed in [20]: |µ| = 400GeV,

m0 = 1000GeV, M1/2 = 500GeV and tanβ = 10 and we have set |Aµ|=|Ae|=700GeV. All the

LFV elements of the slepton mass matrix are set to zero except (m2

L)eµ = 250 GeV2 and (m2

R)eµ =

12500 GeV2. We have taken Pµ = 100%.

However at this benchmark, the sensitivity to the phase of Aµ is quite low.

The input of figure 2 is similar to that of figure 1 except that a hierarchy is assumed

between the left and right LFV elements: |(m2
L)eµ| ≪ |(m2

R)eµ|. As expected in this case,

R1 ≈ 1 and the transverse polarizations are small. To draw figure 3, we have set the LFV

elements of m2
L and m2

R equal to zero and instead we have set Aeµ, Aµe 6= 0. As seen in

figure 3 in this case, the transverse polarizations can be sizeable.

Figures 4–6 show R2, R(µ + T i → e+ T i), 〈sT1
〉 and 〈sT2

〉 (see, eqs. (3.6), (3.9), (3.10)

for definitions) versus the phases of Aµ and the LFV elements. To draw the figures corre-

sponding to the µ − e conversion, we have taken Pµ = 20%. If the technical difficulties of
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Figure 3: Observable quantities in the µ → eγ experiment versus the phases of Aµ, (m2

LR)eµ and

(m2

LR)µe. The vertical axes in figures (a)–(d) are respectively 〈PT1
sT1

〉, 〈PT1
sT2

〉, R1 and Br(µ →
eγ). The input parameters correspond to the P3 benchmark proposed in [20]: |µ| = 400GeV,

m0 = 1000GeV, M1/2 = 500GeV and tanβ = 10 and we have set |Aµ|=|Ae|=700GeV. All the

LFV elements of the slepton mass matrix are set to zero except (m2

LR)eµ(= Aeµ〈Hd〉)=14 GeV2

and (m2

LR)µe(= Aµe〈Hd〉)=14 GeV2. We have taken Pµ = 100%.

polarizing the muon in the µ−e conversion experiment is overcome and higher values of Pµ

is achieved, 〈sT1
〉 and 〈sT2

〉 can become larger. Obviously, for a given value of Pµ, 〈sT1
〉 and

〈sT2
〉 have to be re-scaled by (Pµ/20%). Apart from the polarization, the input parameters

in figures 4,5,6 are respectively the same as the input parameters in figures 1,2,3. Notice

that in this case, too, the sensitivity to the phase of Aµ is low. From figure 2, we observe

that |〈sT2
〉| increases more rapidly with sin[arg[(m2

L)eµ]] than with sin[arg[(m2
R)eµ]]. For

|(m2
L)eµ| ≪ |(m2

R)eµ| cases, at first sight, higher sensitivity to arg[(m2
L)eµ] may sound coun-

terintuitive. However, notice that as | sin(arg[(m2
R)eµ])| increases, R2 rapidly converges to

one which means KR ≫ KL and therefore 〈sT2
〉 ∝ Im[KRK∗

L]/(|KL|2 + |KR|2) → 0.
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Figure 4: Observable quantities in the µ − e conversion experiment versus the phases of Aµ,

(m2

L)eµ and (m2

R)eµ. The vertical axes in figures (a)–(d) are respectively 〈sT1
〉, 〈sT2

〉, R2 and

R(µTi → eTi). The input parameters correspond to the P3 benchmark proposed in [20]: |µ| =

400GeV, m0 = 1000GeV, M1/2 = 500GeV and tanβ = 10 and we have set |Aµ|=|Ae|=700GeV.

All the LFV elements of the slepton mass matrix are set to zero except (m2

L)eµ = 2500 GeV2 and

(m2

R)eµ = 12500 GeV2. We have taken Pµ = 20%.

It is remarkable that in the case of figure 4 for which (m2
L)eµ ∼ (m2

R)eµ, R2 is close to

one and the transverse polarizations is relatively small but in the case of figure 5 for which

(m2
R)eµ = 50(m2

L)eµ, (|1 − |R2|| ∼ 1) and the transverse polarizations become sizeable.

We have explored higher hierarchy between the left and right LFV elements and have

found that for (m2
L)eµ

<∼ 500(m2
R)eµ, 〈sT1

〉 and 〈sT2
〉 diminish. Contrasting figures 4,5

with figures 1,2, we find that the polarization studies at the µ → eγ and µ − e conversion

experiments can be complementary. That is if 1−|R1| ∼ few×0.01, transverse polarization

in the µ → eγ will become small making the derivation of the CP-violating phases more

challenging. However there is still the hope to derive the phases by polarization studies
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Figure 5: Observable quantities in the µ − e conversion experiment versus the phases of Aµ,

(m2

L)eµ and (m2

R)eµ. The vertical axes in figures (a)–(d) are respectively 〈sT1
〉, 〈sT2

〉, R2 and

R(µTi → eTi). The input parameters correspond to the P3 benchmark proposed in [20]: |µ| =

400GeV, m0 = 1000GeV, M1/2 = 500GeV and tanβ = 10 and we have set |Aµ|=|Ae|=700GeV.

All the LFV elements of the slepton mass matrix are set to zero except (m2

L)eµ = 250 GeV2 and

(m2

R)eµ = 12500 GeV2. We have taken Pµ = 20%.

at the µ − e conversion experiments. We shall discuss this point in more detail in the

description of figure 7.

Notice that in figures 1–6, which all correspond to the benchmark P3, sensitivity to the

phase of Aµ is low. This is expected because the effect of Aµ is suppressed by tan β = 10.

We have checked for the robustness of this result and found that for most of the parameter

space with large tan β, sensitivity to the phase of Aµ is low but there are points at which

sensitivity to φAµ is considerable; e.g., at δ benchmark which has been proposed in [22].

The following remarks are in order:

• In all of these sets of diagrams, maximal |〈sT1
〉| corresponds to |〈sT2

〉| = 0 and vice
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Figure 6: Observable quantities in the µ − e conversion experiment versus the phases of Aµ,

(m2

LR)eµ and (m2

LR)µe. The vertical axes in figures (a)–(d) are respectively 〈sT1
〉, 〈sT2

〉, R2 and

R(µTi → eTi). The input parameters correspond to the P3 benchmark proposed in [20]: |µ| =

400GeV, m0 = 1000GeV, M1/2 = 500GeV and tanβ = 10 and we have set Aµ=Ae=700GeV. All

the LFV elements of the slepton mass matrix are set to zero except (m2

LR)eµ(= Aeµ〈Hd〉)=14 GeV2

and (m2

LR)µe(= Aµe〈Hd〉)=14 GeV2. We have taken Pµ = 20%.

versa. This is expected from eqs. (3.9) and (3.10) because 〈sT1
〉 and 〈sT2

〉 are respec-

tively given by the real and imaginary parts of the same combinations. For general

values of the phases, |〈sT1
〉|2 + |〈sT2

〉|2 is solely given by the absolute values of KL

and KR, and is independent of their relative phase. Remember that |KR| and |KL|
can be extracted by studying the angular distribution of the electron without mea-

suring its spin. Thus, the simultaneous measurement of R2, 〈sT1
〉 and 〈sT2

〉 provides

a cross-check. A similar consideration holds for R1, 〈PT1
sT1

〉 and 〈PT1
sT2

〉, too.

• When all the phases are set equal to zero, 〈sT2
〉 and 〈PT1

sT2
〉 vanish but 〈sT1

〉
and 〈PT1

sT1
〉 can be nonzero. Thus, for the purpose of establishing CP, it

– 15 –



J
H
E
P
0
1
(
2
0
0
9
)
0
2
2

will be more convenient to measure 〈sT2
〉 or 〈PT1

sT2
〉. This is expected from

eqs. (2.9), (2.10), (3.9), (3.10).

• When (m2
LR)eµ = (m2

LR)µe = 0, in the case of µ → eγ, there is a symmetry under

arg[(m2
L)eµ] ↔ − arg[(m2

R)eµ] [see figures 1,2] but in the case of the µ− e conversion,

there is not such a symmetry [see figures 4,5]. Moreover, while the dependence of

R1 on the phases is very mild, R2 can dramatically change with varying some of the

phases (see, e.g., figure 5c). This can be better understood in the limit of the LFV

mass insertion approximation. Remember that observables in the µ → eγ decay are

given by AL and AR for (m2
LR)µe = (m2

LR)eµ = 0. To leading approximation, AL and

AR are respectively proportional to (m2
R)eµ and (m2

L)eµ. As a result, when we vary

the phase of (m2
R)eµ, only the phase of AL changes. Similarly varying arg[(m2

L)eµ]

only changes arg[AR]. Since R1 depends only on the absolute values of AR and AL,

it should not change with varying the phases. Remember that 〈PT1
sT1

〉 and 〈PT1
sT2

〉
are given by Re[ALA∗

R] and Im[ALA∗
R] which to leading order are proportional to

Re[(m2
R)eµ(m2

L)∗eµ] and Im[(m2
R)eµ(m2

L)∗eµ]. Thus, there should be a symmetry under

arg[(m2
L)eµ] ↔ − arg[(m2

R)eµ] for (m2
LR)µe = (m2

LR)eµ = 0. Observables in the µ − e

conversion case depend on KL and KR. Unlike AL and AR, each of KL and KR

can receive contributions from both (m2
L)eµ and (m2

R)eµ. Thus, the above argument

does not apply here. Similar consideration holds for the case that (m2
LR)µe and

(m2
LR)eµ are nonzero but (m2

R)eµ = (m2
L)eµ = 0 (see, figures 3 and 6). As expected,

when (m2
R)eµ, (m2

L)eµ, (m2
LR)µe and (m2

LR)eµ are all nonzero, the symmetries under

arg[(m2
L)eµ] ↔ − arg[(m2

R)eµ] and arg[(m2
LR)µe] ↔ − arg[(m2

LR)eµ] disappear.

• In this analysis, we have considered the µ − e conversion only on Titanium. It is

possible to perform the experiment on other nuclei such as Au and Al, too. From

eqs. (3.2), (3.3), we find that the effects change with changing the nuclei (with change

of N and Z). In principle, by studying the conversion rate on different nuclei, one can

derive information on different combinations of the phases. However, in practice since

the ratio N/Z for different nuclei in question are more or less the same (the difference

between N/Z of Au and Al is about 20%), 〈sT1
〉, 〈sT2

〉 and R2 for different nuclei turn

out to be close to each other. Only if 〈sTi
〉 can be measured with accuracy better than

5% (i.e., δ〈sTi
〉/〈sTi

〉 < 5%), using different nuclei will help us to solve degeneracies.

Scatter plots shown in figure 7 demonstrate the configurations of the LFV elements

where 〈sT2
〉 or 〈PT1

sT2
〉 can be sizeable. That is where maximal values of 〈sT2

〉 and 〈PT1
sT2

〉
are respectively larger than 0.1 and 0.2. In figure (a) and (c) where only a pair of LFV are

nonzero, only within a band 〈sT2
〉 and 〈PT1

sT2
〉 can be large. This is expected because when

there is a hierarchy between the nonzero elements, we expect a hierarchy between KL and

KR as well as between AL and AR thus 〈sT2
〉 and 〈PT1

sT2
〉 are suppressed. In figures (b)

and (d), (m2
L)eµ, (m2

R)eµ, (m2
LR)eµ and (m2

LR)µe are all nonzero. Notice that depending

on the configuration of the LFV elements, the regions over which 〈sT2
〉 and 〈PT1

sT2
〉 are

large can have partial (like figures (a) and (d)) or complete (like figures (b) and (c)). This

confirms our observation regarding the previous figures. In the case of overlap, one can
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Figure 7: Scatter plots showing points for which 〈sT2
〉 at the µN → eN experiment with Pµ = 20%

and 〈PT1
sT2

〉 at the µ → eγ experiment with Pµ = 100% are sizeable. The points depicted by

plus (square) show the points at which the maximum value of 〈sT2
〉 (〈PT1

sT2
〉) is larger than 0.1

(0.2). The input for LF conserving parameters are the same as the input in figure 1: i.e., the

P3 benchmark with Aµ = Ae=700GeV. In figure (a) all the LFV elements of the slepton mass

matrix are set to zero except (m2

L)eµ and (m2

R)eµ which are randomly chosen respectively from

(3 GeV2, 3 × 103 GeV2) and (10 GeV2, 104 GeV2) at a logarithmic scale. The maximum polar-

ization correspond to arg[(m2

L)eµ] = π/2 and arg[(m2

R)eµ] = 0. Figure (b) is similar to figure (a)

except that (m2

LR)eµ=(m2

LR)µe=4 GeV2 and (m2

L)eµ and (m2

R)eµ are chosen respectively from

(2 GeV2, 2× 103 GeV2) and (5 GeV2, 5× 103 GeV2). In figure (c), we have set (m2

L)eµ=(m2

R)µe=0

and allowed (m2

LR)eµ and (m2

LR)µe to pick up random values at a logarithmic scale from the inter-

val (0.01 GeV2, 10 GeV2). In figure (d), we have set (m2

L)eµ=100 GeV2, (m2

R)eµ=400 GeV2 and

allowed (m2

LR)eµ and (m2

LR)µe to pick up random values from the interval (0.01 GeV2, 10 GeV2).

employ both experiments to derive information on the CP-violating phases. In the next

section, we discuss how by combining the information from these two experiments, one can

derive extra information and resolve degeneracies.
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Figure 8: Transverse polarization in the µ → eγ and µTi → eTi processes. The input for LF

conserving parameters are the same as the input in figure 1: i.e., the P3 benchmark with Aµ =

Ae=700GeV. The only sources of LFV are the eµ elements. In calculating 〈PT1
sT2

〉 (see eq. (2.10))

and 〈sT2
〉 (see eq. (3.10)) we have respectively set Pµ = 100% and Pµ = 20%. Points depicted by

various colors and symbols as described in the legend correspond to the case that the phases of

various elements vary between 0 and 2π. The points show the correlation of 〈PT1
sT2

〉 and 〈sT2
〉 at

configurations of LFV for which 0.3 ≤R1≤ 0.4, 0.7 ≤R2≤ 0.9, 5.9×10−12≤Br(µ → eγ)≤ 6.5×10−12

and 8.5 × 10−14 ≤ R(µTi → eTi)≤ 1.1 × 10−13. In collecting the colored points in figure (b) we

have removed the points for which |de| exceeds 10−29 e cm (the reach of running experiments [24]).

The black points in figure (b) depicted by slightly larger plus and squares satisfy the condition

2 × 10−29 e cm < de < 3 × 10−29 e cm.

5. Resolving degeneracies

As discussed in the previous sections, all the observables in the µ → eγ experiment are

determined by a pair of effective couplings (AL, AR) which in turn receive contributions

from various parameters in the underlying theory. By measuring Br(µ → eγ), R1 and

either of 〈PT1
sT1

〉 and 〈PT1
sT2

〉 (see, eqs. (2.9), (2.10)), one can reconstruct both AL and

AR (up to a common phase). However, because of the degeneracies, it is not possible to

unambiguously derive the values of the LFV elements and the CP-violating phases of the

underlying theory from AL and AR.

Similarly to the µ → eγ experiment, the observable quantities in the µN → eN

experiment are given by a pair of parameters (KL,KR) which depend on the LFV masses

and CP-violating phases of the underlying theory. By measuring R(µN → eN), R2 and

either of 〈sT1
〉 and 〈sT2

〉 (see, eqs. (3.9), (3.10)), it is possible to reconstruct |KL|, |KR|
and their relative phase; however, deriving the LFV and CP-violating parameters of the

underlying theory from (KL,KR) would suffer from degeneracies.

Fortunately, the pairs of (KL,KR) and (AL, AR) depend on different combinations of

the LFV elements. Thus, there is a hope to solve a part of degeneracies by combining

information from the (µ → eγ) and (µN → eN) experiments. Figure 8 demonstrates such
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a possibility. In the case of the points depicted by red plus (+), green filled circle, dark

blue circle and purple triangle, all the phases are set to zero except one of the phases which

is specified in the legend and varies between 0 and 2π. In the case of points depicted by

cyan squares, the phase of (m2
LR)µe is set equal to 0.7 of the phase of (m2

L)eµ which varies

between zero and 2π/0.7 (thus, arg[(m2
LR)µe] varies between zero and 2π). The rest of the

phases are set equal to zero. As we saw in the previous section, the sensitivity to the phase

of Aµ is low (especially at the P3 benchmark) so in this analysis we have not considered

this phase and focused on the effects of the phases of the LFV elements.

Hopefully, LHC will discover supersymmetry and provide us with information on the

values of LF conserving parameters such as values of tan β and the masses of neutralinos,

charginos (hence the values of M2 and µ) and sfermions and etc. In the literature, it is dis-

cussed that under certain circumstances, LHC can also measure the LFV parameters [23].

However, in this analysis, we solely rely on the LFV rare processes µ → eγ and µN → eN

to derive the LFV parameters. Having this prospect in mind, we have chosen the values

at the P3 benchmark for the lepton flavor conserving parameters. We have then searched

for the values of the LFV eµ elements at which the observable quantities Br(µ → eγ),

R(µTi → eTi), R1 and R2 are in a given range. We have fixed Ae and Aµ to 700 GeV.

Notice that measuring |Aµ| and |Ae| at LHC is going to be challenging if possible at all.

In principle, we should have set Aµ and Ae as free parameters to be determined from the

µ → eγ and µ − e conversion experiments along with the LFV parameters. Notice how-

ever that, for tan β & 10, sensitivity to these parameters is low (i.e., varying Ai from 0 to

700 GeV, the changes in the values of the observables are less than 5%). If tan β turns out

to be lower or a precision better than 5% is achieved, Aµ and Ae should be treated as free

parameters (rather than input).

The idea behind the plot is as follows. Suppose µ → eγ and µTi → eTi are detected

and their rates are measured with some reasonable accuracy. Moreover suppose R1 and

R2 are measured and found to be in the range indicated in the caption of figure 8. The

question is what configurations of LFV elements and the CP-violating phases can give

rise to these values of the observables. To answer this question, we have looked for the

solutions by varying |(m2
L)eµ|, |(m2

R)eµ|, |(m2
LR)eµ| and |(m2

LR)µe| respectively in the range

(0, 10000) GeV2, (0, 15000) GeV2, (0, 50) GeV2 and (0, 50) GeV2 for given values of the

CP-violating phases. We have then inserted the values of the LFV elements at the solutions

in the formulas of 〈sT2
〉 and 〈PT1

sT2
〉 and depicted it in figure 8a by a point.

From figure 8a, we observe that all sets of the solutions depicted with various symbols

reach to each other at the point 〈sT2
〉 = 〈PT1

sT2
〉 = 0. This is expected because setting the

phases equal to zero renders AL, AR, KL and KR real so both 〈sT2
〉 and 〈PT1

sT2
〉 vanish (see,

eqs. (2.10), (3.10)). Apart from this point, the set of points depicted by plus and triangles

are separate from points depicted by empty circles which means by combining information

from the µ → eγ and µ − e conversion searches, one can solve the degeneracy between

these solutions. For example, if |〈sT2
〉| < 0.05 and 〈PT1

sT2
〉 ≃ 0.38, we can make sure that

neither of the solutions with zero arg[(m2
LR)eµ] that we have considered in this analysis can

be the case. However, the degeneracy is not completely solved. For example from figure 8a,

we observe that the regions over which points depicted by plus and square are scattered,
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overlap. At the intersection of the two regions, both (arg[(m2
LR)µe] = 0.7 arg[(m2

L)eµ] 6= 0)

and (arg[(m2
LR)µe] = 0, arg[(m2

L)eµ] 6= 0) can be a solution.

We have repeated the same analysis for other ranges of R1, R2, Br(µ → eγ) and

R(µTi → eTi). As long as R1 and R2 deviate from ±1, the above results are maintained.

However, when R1 and R2 approach ±1, regardless of the values of the phases, the corre-

sponding transverse polarizations become so small that in practice cannot be measured.

In summary, combining the information from µ → eγ and µN → eN searches consider-

ably lifts the degeneracies however, does not completely resolve them. By employing other

observables, it may be possible to completely solve the degeneracies. For example, it is in

principle possible to derive extra information on the eµ elements by studying other LFV

processes such as µ → eγγ which within our scenario takes place with a rate suppressed

by a factor of O(e2/16π2) relative to the rate of µ → eγ. A more promising approach is to

employ the information from the de searches. As we discussed in the previous section, the

phases of the eµ elements can lead to |de| ∼ 10−29 e cm which is within the reach of the

currently running experiments [24]. To examine how much forthcoming results on de can

help us to resolve the degeneracies, we have presented figure 8b. This figure is similar to

figure 8a with the difference that at each point in addition to observables in the µ → eγ

and µ− e conversion experiments, we have also calculated de. We have removed the points

for which |de| > 10−29 e cm from the set of points depicted by colored symbols. In the case

of (arg[(m2
LR)eµ] = 0, arg[(m2

L)eµ] 6= 0) and (arg[(m2
LR)eµ] = 0.7 arg[(m2

L)eµ] 6= 0), we have

also depicted points satisfying the condition 2 × 10−29 e cm < de < 3 × 10−29 e cm with

slightly larger black symbols.

Notice that unlike in figure (a), in figure (b) the regions over which the squares and

pluses are scattered have no overlap. This means de can help us to resolve the degeneracies.

For example according to figures 8a,8b, if 〈sT2
〉 and 〈PT1

sT2
〉 are measured and found

to be respectively equal to 0.05 and 0.3, both (arg[(m2
L)eµ] = 0, arg[(m2

LR)µe] 6= 0) and

(arg[(m2
LR)µe] = 0.7 arg[(m2

L)eµ] 6= 0) can be a solution. But if de turns out to be in the

range (2 − 3) × 10−29 e cm, the solution with (arg[(m2
L)eµ] = 0) will be excluded.

6. Conclusions

In this paper, we have first derived the formulas for the transverse polarization of the

final particles in µ → eγ, µ → eee and µ − e conversion in terms of the couplings of the

effective LFV Lagrangian describing these processes. We have shown that by measuring

these polarizations, one can derive information on the CP-violating phases of the underlying

theory. We have then focused on the polarizations of the final particles in the µ → eγ and

µ − e conversion processes. We have found that for the configurations of LFV elements

that asymmetries R1 and R2 (see eqs. (2.3), (3.6) for definitions) are not close to ±1, the

transverse polarization can be sizeable and sensitive to certain combinations of the CP-

violating phases. We therefore suggest the following steps as the strategy to extract the

CP-violating phases. If in the future µ → eγ and/or µ− e conversion is detected with high

statistics, it will be possible to measure R1 and/or R2 by studying the angular distribution

of the final particles relative to the spin of the decaying muon. If R1 and/or R2 turn
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out to considerably deviate from ±1, it is then recommendable to equip the experiment

with polarimeters to measure the transverse polarizations of the final particles and derive

information on the phases of the effective couplings.

The above results apply to a general beyond SM scenario that provides large enough

sources of LFV to allow detectable rates for µ → eγ and µN → eN . Within a given

scenario, the couplings of the effective Lagrangian can depend on various parameters in

the underlying theory. This leads to degeneracies in deriving these parameters. In this

paper, we have addressed this problem in the context of R-parity conserving MSSM. We

have implicitly assumed that supersymmetry would be discovered at the LHC and the

lepton flavor conserving parameters relevant for this study (e.g., chargino and neutralino

masses, slepton and sfermion masses and etc.) would be measured. We have then studied

what can be learnt about the LFV and CP-violating parameters of MSSM at µ → eγ and

µ − e conversion experiments.

We have found that the dependence of the polarizations in the cases of µ → eγ and

µ − e conversion on the parameters of the underlying theory is different. As a result,

depending on the configuration of the LFV elements, the effect can be sizeable in none,

only one or both of the µ → eγ and µ − e conversion processes. Thus, the polarization

studies in these processes are complementary.

We have focused on the effect of the eµ elements and studied the dependence of the

various observables on the phases of Aµ and the eµ LFV elements. Since there are already

strong bounds on the phases of µ, M1 (Bino mass) and Ae from electric dipole moment

searches, we have taken these parameters real. We have found that for most parts of the

parameter space with large tan β (i.e., tan β ∼ 10) the sensitivity to Aµ is low but the

sensitivity of transverse polarizations both in µ → eγ and µ − e conversion to arg[(m2
L)eµ]

is high. However, there are regions in the parameter space that the sensitivity to arg[Aµ] is

sizeable (e.g., the δ benchmark [22]). The sensitivity to arg[(m2
R)eµ] in the case of µ → eγ

is also high but in the case of the µ − e conversion, the sensitivity to arg[(m2
R)eµ] is low.

In the context of the present scenario, various CP-violating parameters can affect

the observables in the µ → eγ and µN → eN experiments. These polarizations also

strongly depend on the ratios of the absolute values of the various LFV elements. We have

shown that for configurations of LFV elements for which −0.9 < R1, R2 < 0.9, combining

information on R1, R2, Br(µ → eγ) and R(µN → eN) with information on the transverse

polarization of the final particles can help us to considerably decrease degeneracies and

derive information on these phases. However, information from these measurements is not

enough to fully resolve degeneracies. For example, we have shown degeneracies between

solutions (arg[(m2
LR)µe] = 0, arg[(m2

L)eµ] 6= 0) and (arg[(m2
LR)µe] = 0.7 arg[(m2

L)eµ] 6= 0)

cannot be removed even when we use all the information accessible at the µ → eγ and

µN → eN search experiments. To fully resolve the degeneracies, extra information from

other experiments has to be employed. We have also demonstrated that the forthcoming

results of the de search can help us to remove the degeneracies further.

Notice that by [simultaneously] turning on the µτ and eτ elements, more degeneracies

will emerge. To resolve these degeneracies, one can employ other observables such as

Br(τ → eγ) and Br(τ → µγ). Studying the general case is beyond the scope of the present
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paper and will be presented elsewhere.

We have also briefly discussed the possibility to derive further information by using

different nuclei in the µ− e conversion experiment and found that since the ratio of proton

number to the neutron number for different nuclei is close to each other, the polarizations

are similar for different nuclei. Unless a precision better than 5% is achieved, changing the

nuclei will not help us to extract information on an extra combination of the parameters

but can be considered as a cross-check of the results.
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